
Design in Practice

Rich Hickey

Objective - Demystify Design

not (just) going to the hammock
practice - ‘what you do’

concrete techniques with tangible outputs
demonstrable progress ‘walk forward’
activities you can make PM stories out of

thus make time for, throughout the dev process

not pleading for 2 weeks of nebulous 'hammock time' up front

valuable artifacts that make the effort evident

tips and techniques, not a formal method or anything highfalutin

Design

design - Latin for ‘wai"ng # code’

coding happens throughout

performing experiments

answering interim questions

why you want a language that supports exploratory programming
without being in a project building context

Design (cont.)

‘mark out, a plan’
 the emphasis in this talk is about supporting your (team's) reasoning process,

not just the end-product blueprint-like design

writing down your thoughts helps you form them

techniques can guide your thinking and decision-making

reified/refined/shared concepts

onboarding/resumption

validation

eventually, documentation

Words

Choose good words, all the time
not about bikeshedding or premature marketing

precision in naming == precision in thinking ‘before + cut’

eschew nicknames, superheroes etc
not semantic/meaningful
give cover to fuzziness

don't track evolving thinking

be succinct ‘gird/ga"er up’
 brief, clear and complete
 not just concise ‘cut off’, or merely hinted at

More Words

use the dictionary (not just good for writing keynotes)
go right to the origins

- most useful/abstract semantics
- discover the composition within words

a good word later becoming 'wrong' could mean:

you've changed your mind w/o acknowledging it

you are drifting from your intentions

your thinking will evolve and your words (story titles etc) should also

Technique: Glossary

terms are inevitable in tech
valuable shorthand

don't presume a shared understanding

define, in one place

use uniformly and consistently

helps non-tech folks trying to follow along

when terms break, fix or abandon

Example: Glossary

Questions

a most powerful thinking tool

to formulate a question is to reify what you seek

getting questions right is half the battle

questions provoke, often novel thinking

logic (just) helps us rule out some of it

Technique: The Socratic Method

interrogate ‘ask "ge#er’
examine an idea dispassionately

questioning its underlying assumptions, consistency

Dispassionate ‘wi"out suffering'

you are not your idea

you are a source of ideas, some better than others

We don't define/opine the truth, we discover it

'The Socratic Method: A Practitioner’s Handbook' - Farnsworth

Father Watson's Questions

Where are you at?

Where are you going?

What do you know?

What do you need ! know?

Devs are good at the first two, but those miss ‘why?’

Technique: Reflective Inquiry

Understanding Activity

Status ‘" stand’ What do you know? Where are you at?

Agenda ‘" be done’ What do you need to know? Where are you going?

this is a framework that can be applied throughout the design process

note the importance of thinking about your thinking
reflect - ‘bend back’

inquiry - advancing knowledge, is the driver

Technique: PM Top Story/ticket

Several design techniques contribute to your 'top' story in PM

Looking to always create structured stories with sections for:

Title

Description

Problem Statement

Approach

Design stories contribute to building a 'top' story

Example: Story

Design Progress

measured by increasing understanding
of the truth of the world

and your opportunities within it

decisions made and why

not checking off some process/method or design artifact list

or making a plan from your first idea

Design Phases

not everything with any linearity is a 'waterfall'
nor do you want 'iterative development'

iterate == Latin for ‘do-over’
better: incremental - ‘grow in#’

more like a hike up the (understanding) mountain, not always up, but trending up

being able to name phase ‘appearance’ helps with ‘where are you at?’
not monotonic - ok! stay open-minded

this is when change is cheapest

be explicit about backtracking

Phases

“"ese are words wi" a D "is #me”

Describe (situation)
Diagnose (possible problems)
Delimit (the problem you are going to solve)
Direction (strategy, approach)
Design (tactics, implementation plan)
Dev (build it)

at any time:

Decide (to do, or not)

Phase: Describe

the situation
bug/failure reports

feature requests, external and internal (backlog)
context

What do you know? something seems wrong/obstructive in the world
What do you need to know? the extent of it

Where are you at? observing, listening
Where are you going?
- initial story title
- write down a Description in top story

Technique: Description

one paragraph summary
 situation/context

 symptoms/reports/observations
 requests

don't:

say what the problem is

accept as facts assertions that imply what the problem is

instead: X says Y

Phase: Diagnose

‘know across’ possible problem(s), of two kinds

1 - bugs/defects
- yes bugfixes need design (or revisions of a design)
- lest you just play symptom/code whack-a-mole
2 - features

What do you know? the symptoms/context
What do you need to know? the cause(s)

Where are you at? have good description, evidence
Where are you going?
- applying logic and experimentation
- to explicate ‘unfold’

Diagnose: Bugs

symptom → possible problems → (likely) problem

hypotheses (more than one)

pick one (how?)

use logic first (to rule out)

'most likely' (intuition)

makes the problem space smallest (divide and conquer)

Use the scientific method

Technique: Scientific Method

out of scope for this talk

formulate a supporting/refuting conjecture

design an experiment

write result template first
- "if this sheet were filled in we'd know X"

code it, conduct it

apply conjecture logic, repeat

Diagnose: Feature Requests

feature: factura: making, of an answer
 not the problem

‘we don’t have feature X’ is never a valid problem statement

recognize and kill all such statements

feature → problem(s) for which that feature is (one possible) answer

what is the user's intention/objective? (not how)

what is in the way?

Phase: Delimit

the problem you are going to solve
 you might discover multiple problems or bigger problems during diagnosis

What do you know? what the problem is
What do you need to know?
-how to state it succinctly
-its scope

Where are you at? have diagnosis
Where are you going?

making the problem statement

Technique: Problem Statement

Succinct statement of unmet user objectives and cause(s)
 not symptoms/anecdotes/desires

 not remedy/solution/feature - challenge is to filter out

modify your top story title from symptom→problem
add Problem after the Description in the top story - link to diagnosis work

subject to refinement
- as your understanding increases
- don't let your problem statements get stale

This is the most important artifact you will have
if you don't relentlessly focus on a problem you may make something that

doesn't solve any problem

Phase: Direction

strategy, approach
 User's intentions and objectives

 High-level approaches to addressing
e.g. in-proc/out, lib/app, buy/build, modify/add, automatic/manual etc

What do you know? what the problem is
What do you need to know?
- the user objectives in more detail
- the possible approaches
- the best of these
- what matters in deciding (criteria)

Phase: Direction (cont.)

Where are you at? Have description and problem statement
Where are you going?

Enumerating uses cases

Making a strategy DM

criteria, approaches and tradeoffs

determining scope

entering Approach section on top story

Technique: Use Cases

user's intentions and objectives
in terms of what the user could accomplish

 were the problem solved
 not how (yet)

 make a blank 'how' column for later

should not start with
 “"e user wi# push an orange oval bu$on and music wi# play”

later you will fill in the 'how' column with that kind of recipe for using the solution
you've designed

Template: Use Cases

Example: Use Cases

Technique: Decision Matrix (DM)

a (google or other live-editing) sheet

A:1 what decision are you trying to make, for which problem?

Approaches - Columns (but first labels rows)
Criteria - Rows (but first labels columns)
Aspects - Cells

sheets > docs

prose docs create a linearization that makes contrast difficult

Template: DM

DM Columns: Approaches

first row or two describe approach
- must give you shorthand for talking, yet make clear what about
- succinct description of approach, use row 2 if needed
- freeze the approach title/description rows

if you are modifying something, the first 'approach' should be the status quo

columns for what others have done in same situation

and your initial ideas

A DM is about creating a great approach, not merely shopping

the answer is often an approach you don't begin with

DM Rows: Criteria

‘means of judging/deciding’

First column - succinct descriptions of criteria (freeze this column)
Include criterion iff salient or relevant, sort by importance, distinction

will usually include rows for

fitness for solving the problem (from use cases)

various '-ilities'

costs (time, dev effort, $), risks

compatibility, complexity

etc - purpose built for problem (reflective)

DM Cells: Aspects

of approach per criterion
 succinct description of how approach handles criterion (or doesn't)

 avoid y/n/true/false/numeric-rank criteria, and in cells

avoid judgement in text, instead use (unsaturated!) cell background color

Neutral - clear

Some challenge or negative - yellow

Seems blocking or failing to address problem - red

Seems particularly desirable/better - green

DM Cells: Aspects (cont.)

Can start with just 'pros' and 'cons' rows/cells

but important to split up later

only then are criteria explicit

and all approaches judged similarly

Contrast - ‘stand against’

edges are primary triggers of perception

Example: DM

DM: Tips

Avoid
the all-green column - are you rationalizing?
undistinguished columns - find the differences that matter
exhaustive or template rowsets - s.b. specific criteria, not just characteristics
links as primary cell content - ok as supplement to summary text in cell
hidden comments/popups etc - keep things in view
phrasing criteria as questions - clash with inline questions

include questions as soon as they arise!

put '?' anywhere (approach/criterion/aspect)

- if you are unsure of importance

- or the info is unknown

DM: Outputs

 a succinct description of the problem/decision being taken on
 a set of several approaches, succinctly described
 an explicit and clear expression of what matters in making the decision
 detailed aspects for all of the approaches per criterion
 - aligned for contrast

 at-a-glance, fine-grained subjective assessment
 - subjectivity all in one place (cell color)

a set of questions for follow up

clear benefits+tradeoffs

DM: Benefits

come back later/arrive late - (re)load context

live group thinking tool - make everything visible as text
- vs voice + independent notes

promotes shared understanding
- call out ambiguity, inconsistency etc
- raise and capture questions and ideas immediately

birthplace of abstraction

provocation for background thought
 hammock, sleep

 where new columns and best answers are born

Phase: Design

tactics, implementation plan
the blueprint-like design

What do you know? the problem and the direction we are taking to solve
What do you need to know?
- the possible implementation approaches
- the best of these
- what matters in deciding
- how the users will use your solution

Phase: Design (cont.)

Where are you at? Have use cases and strategy/direction DM
Where are you going?

implementation approach DM(s)

design (plan) diagrams

implementation decisions

add detail to Approach section of top story

fill in 'How' column in Use Cases

how user can accomplish using feature/API etc

possible scope adjustment or backtracking if impl poses new challenges

Example: Impl DM

Technique: Diagrams

details out of scope for this talk

important complement for tables and prose, better for:

architecture

flows

relationships

representations/layouts

UI

diagram your problems, not just your solutions

Phase: Dev

build it

You understand why you are making the thing - solving this problem
You know how to make it - few or no unknowns
You are confident it will work
- lots of supportive material
- keeps you on track
- facilitates adding others to team

 the solution will be smaller and more general due to having designed it

 Have at, with your dev toolkit and techniques

but don't build something on the same day you think of it

Thanks!

Dan (for all the notes), Stu, Alex and my other Socratic victims friends on the
Clojure and Datomic teams

Inspiration exists, but it has to
find you working

— Pablo Picasso

