Design in Practice

Rich Q—[i’cﬁey

Objective - Demystify Design
not (just) going to the hammock

practice - ‘what you do’

concrete techniques with tangible outputs
demonstrable progress ‘walk forward
activities you can make PM stories out of

thus make time for, throughout the dev process

not pleading for 2 weeks of nebulous 'hammock time' up front
valuable artifacts that make the effort evident

tips and techniques, not a formal method or anything highfalutin

Design

design - Latin for ‘waiting to code’
coding happens throughout
performing experiments

answering interim questions

why you want a language that supports exploratory programming
without being in a project building context

Design (cont.)

‘mark out, a Jofcm’

the emphasis in this talk is about supporting your (team's) reasoning process,
not just the end-product blueprint-like design

writing down your thoughts helps you form them

techniques can guide your thinking and decision-making

reified/refined/shared concepts
onboarding/resumption

validation

eventually, documentation

Words

Choose good words, all the time
not about bikeshedding or premature marketing

precision in naming == precision in thinking ‘before + cut’

eschew nicknames, superheroes etc
not semantic/meaningful
give cover to fuzziness
don't track evolving thinking

be succinct ‘gin[/garﬂer up’

brief, clear and complete
not just concise ‘cut (ﬁ, or merely hinted at

More Words

use the dictionary (not just good for writing keynotes)
go right to the origins
- most useful/abstract semantics
- discover the composition within words

a good word later becoming ‘wrong' could mean:

you've changed your mind w/o acknowledging it

you are drifting from your intentions

your thinking will evolve and your words (story titles etc) should also

Technique: Glossary

terms are inevitable in tech
valuable shorthand

don't presume a shared understanding

define, in one place

use uniformly and consistently
helps non-tech folks trying to follow along

when terms break, fix or abandon

Term

locality

affinity

partition

explicit partition

implicit partition
primary
related

Example: Glossary

Meaning

A property of data: It is a measure of the distribution of datoms you need to find, across segments as seen from the
perspective of one of the indexes.

A measure of locality is the number of segments that need to be examined.

A strategy for assigning partitions, where you say that things are related and should be in the same partition, and thus
grouped together in storage
(could be coaligned with another entity, with time, with a value, with a batch)

See https://docs.datomic.com/on-prem/schemal/schema.htmli#partitions

Partitions group data together (in storage), providing locality of reference when executing queries across a collection of
entities.

Entities in the same partition to sort and be stored together in E-leading indexes, i.e. EAVT and AEVT.

Partitions are associated with entity ids, and are named by keywords, or referred to by index in a space.

Encoded as hi bits in entity ids

Partition entity ids are suitable as arguments to d/tempid, d/entid-at, and :db/force-partition

partition associated with an explicitly-created. named partition entity
datomic comes with 3 explicit partitions: :db.part/db :db.part/user and :db.part/tx

a partition that can be referred to by its index in a range of integers 0<=x<524288. These partitions have entity ids, and
they require no explicit installation.
Their entity ids consist of: part=index with the 20th bit set, eidx=0

In larger applications, you may want to spread data across a larger number of partitions. Implicit partitions provide a
mechanism for this.
Implicit partitions provides a way to manage a large number of partitions numerically and algorithmically.

old ref to partition sharding
the owning side of affinity, use to choose partition for related (e.g. the customer)
the "owned" side of affinity, gets partition from primary (e.g. some activity entities related to a particular customer)

Questions

a most powerful thinking tool
to formulate a question is to reify what you seek
getting questions right is half the battle
questions provoke, often novel thinking

logic (just) helps us rule out some of it

Technique: The Socratic Method

interrogate ‘ask wgetﬁer’

examine an idea dispassionately
guestioning its underlying assumptions, consistency

Dispassionate ‘without suffering

you are not your idea

you are a source of ideas, some better than others
We don't define/opine the truth, we discover it

'The Socratic Method: A Practitioner’'s Handbook' - Farnsworth

Father Watson's Questions

Where are you at?

Where are you going?
What do you know?

What do you need to know?

Devs are good at the first two, but those miss ‘wﬁy?’

Technique: Reflective Inquiry

Understanding Activity
Status ‘to stand’ What do you know? Where are you at?
Agenda ‘to be done’ What do you need to know? Where are you going?

this is a framework that can be applied throughout the design process

note the importance of thinking about your thinking
reflect - ‘bend back’

iInquiry - advancing knowledge, is the driver

Technigue: PM Top Story/ticket

Several design techniques contribute to your 'top' story in PM

Looking to always create structured stories with sections for:

Title
Description
Problem Statement

Approach

Design stories contribute to building a 'top' story

Example: Story

Support Java Streams in Clojure's seq functions

Description

As Java Streams become more pervasive, users struggle with being unable to process them using Clojure's standard library, which
does not accept them.

Problem

Java Streams are not seqgs, nor do they implement any interfaces to which Clojure already bridges, thus are not accessible to
Clojure's functional operations. Furthermore, they are stateful and not functional, and require special handling.

Approach

Java streams are stateful (like iterators) but we need the ability to seq (like iterator-seq which caches from stateful iteration),
reduce, and into from a stream. Once we have that, we can leverage existing Clojure seqg/transducer tech to manipulate streams.

Create:

e Reduce support via Stream.reduce, needs BinaryOperator (see functional interfaces story)
e stream-seq! Similarto iterator-seq - creates a seq as it reads stream

e into supportvianew stream-into! -implemented with Collector, and utilizing transients etc
Note these will be 'terminal' functions on the Stream.

Planning Sheet: https://docs.google.com/spreadsheets/d/1gmVNHCa6 3dy._-
TcE/edit#gid=1073327933

Design Progress

measured by increasing understanding
of the truth of the world
and your opportunities within it

decisions made and why

not checking off some process/method or design artifact list

or making a plan from your first idea

Design Phases

not everything with any linearity is a 'waterfall'
nor do you want 'iterative development'

iterate == Latin for ‘do-over’
better: incremental - ‘grow into’

more like a hike up the (understanding) mountain, not always up, but trending up

being able to name phase ‘appearance’ helps with ‘Where are you at?’
not monotonic - ok! stay open-minded

this is when change is cheapest

be explicit about backtracking

Phases

“these are words with a ‘D this time”

Describe (situation)

Diagnose (possible problems)

Delimit (the problem you are going to solve)
Direction (strategy, approach)

Design (tactics, implementation plan)

Dev (build it)

at any time:

Decide (to do, or not)

Phase: Describe

the situation
bug/failure reports
feature requests, external and internal (backlog)
context

What do you know? something seems wrong/obstructive in the world
What do you need to know? the extent of it

Where are you at? observing, listening
Where are you going?

- Initial story title

- write down a Description in top story

Technique: Description

one paragraph summary
situation/context
symptoms/reports/observations
requests

don't:

say what the problem is
accept as facts assertions that imply what the problem is

iInstead: X says Y

Phase: Diagnose

‘tnow across’ possible problem(s), of two kinds

1- bugs/defects

- yes bugfixes need design (or revisions of a design)
- lest you just play symptom/code whack-a-mole

2 - features

What do you know? the symptoms/context
What do you need to know? the cause(s)

Where are you at? have good description, evidence
Where are you going?
- applying logic and experimentation

- to explicate ‘unfold’

Diagnose: Bugs

symptom - possible problems - (likely) problem
hypotheses (more than one)
pick one (how?)

use logic first (to rule out)
'most likely' (intuition)

makes the problem space smallest (divide and conquer)

Use the scientific method

Technique: Scientific Method

out of scope for this talk
formulate a supporting/refuting conjecture
design an experiment

write result template first
- "If this sheet were filled in we'd know X"

code it, conduct it

apply conjecture logic, repeat

Diagnhose: Feature Requests

feature: factura: making, of an answer
not the problem

‘we don’t have feature X’ is never a valid problem statement
recognize and kill all such statements
feature - problem(s) for which that feature is (one possible) answer

what is the user's intention/objective? (not how)

what is in the way?

Phase: Delimit

the problem you are going to solve
you might discover multiple problems or bigger problems during diagnosis

What do you know? what the problem is
What do you need to know?

-how to state it succinctly

-its scope

Where are you at? have diagnosis
Where are you going?

making the problem statement

Technique: Problem Statement

Succinct statement of unmet user objectives and cause(s)
not symptoms/anecdotes/desires
not remedy/solution/feature - challenge is to filter out

modify your top story title from symptom-problem
add Problem after the Description in the top story - link to diagnosis work

subject to refinement
- as your understanding increases
- don't let your problem statements get stale

This is the most important artifact you will have
If you don't relentlessly focus on a problem you may make something that
doesn't solve any problem

Phase: Direction

strategy, approach
User's intentions and objectives
High-level approaches to addressing
e.g. in-proc/out, lib/app, buy/build, modify/add, automatic/manual etc

What do you know? what the problem is
What do you need to know?

- the user objectives in more detall

- the possible approaches

- the best of these

- what matters in deciding (criteria)

Phase: Direction (cont.)

Where are you at? Have description and problem statement
Where are you going?
Enumerating uses cases
Making a strategy DM
criteria, approaches and tradeoffs
determining scope

entering Approach section on top story

Technique: Use Cases

user's intentions and objectives
in terms of what the user could accomplish
were the problem solved
not how (yet)
make a blank 'how' column for later

should not start with
“the user will]ousﬁ an orange oval button and music will Jofay”

later you will fill in the 'now' column with that kind of recipe for using the solution
you've designhed

Template: Use Cases

A

problem this sheet is about

user intention/objective
another user intention/objective
another user intention/objective

B

How (given solution design)

Notes

Example: Use Cases

A

Morse setup and invocation

| want to use Morse to develop and

inspect my process

| want to use Morse but my process

iSs remote

| want to use Morse but my process

is remote and it can't or doesn't
take replicant as a dep

| want Morse to handle my REPL

interactions and display their results

automatically

how

take morse as a dev-time dep in :dev alias
require and use in REPL
(m/inspect X) in REPL, shows up in Morse

take replicant server as a dep in the remote process
start server
connect

prereqs: remote proc has a socket REPL available, and
Clojure 1.12.0-alpha3 +

THEN

connect editor to socket REPL (or nc)

(add-lib 'org.clojure/data.alpha.replicant-server) in your
REPL

(require replicant server as r)

(r/start-replicant port) server with port

in terminal launch Morse as a tool pointing to
replicant-server's port

For stream repl, could re-enable this recipe using stream
I/0O (with downsides of not working for nrepl etc):

use project classpath (-M or -X, not -T)
run ui with in-proc mode
use the morse/repl as the proc

| want to connect Morse to a remote NOT CURRENTLY SUPPORTED

process and | want m/inspect in
REPL

| want Morse to cooperate with my NOT CURRENTLY SUPPORTED

REPL to display results

notes

the way to see stuff in your REPL
interactions it to bind them in user
ns and eval them in Morse editor

the way to see stuff in your REPL
interactions it to bind them in user
ns and eval them in Morse editor

.NOT YET or undoced?

(r/start port) -> conn or magic
(r/inspect conn? val) does push?

clojure.main allows callback for
eval?

Technique: Decision Matrix (DM)

a (google or other live-editing) sheet

A:1 what decision are you trying to make, for which problem?

Approaches - Columns (but first labels rows)
Criteria - Rows (but first labels columns)
Aspects - Cells

sheets > docs

prose docs create a linearization that makes contrast difficult

© e N O

11
12
13
14
15
16
17
18

A

Problem and decision this
sheet is about

a criterion
another criterion

another criterion

Template: DM

B

current approach
(if there is one)

additional succinct
summary

aspect - how this
approach handles this
criterion

aspect

not so great aspect

Cc

another
approach

more

aspect
blocker aspect

not so great
aspect

D

another
approach

appealing
aspect
aspect

unknown
aspect?

Notes

lorem ipsum

DM Columns: Approaches

first row or two describe approach

- must give you shorthand for talking, yet make clear what about
- succinct description of approach, use row 2 if needed
- freeze the approach title/description rows

if you are modifying something, the first '‘approach' should be the status quo
columns for what others have done in same situation

and your initial ideas

A DM is about creating a great approach, not merely shopping

the answer is often an approach you don't begin with

DM Rows: Criteria

‘means @C juo@ing/cfecidi’ng’

First column - succinct descriptions of criteria (freeze this column)
Include criterion iff salient or relevant, sort by importance, distinction

will usually include rows for

fitness for solving the problem (from use cases)
various '-ilities'

costs (time, dev effort, $), risks

compatibility, complexity

etc - purpose built for problem (reflective)

DM Cells: Aspects

of approach per criterion
succinct description of how approach handles criterion (or doesn't)
avoid y/n/true/false/numeric-rank criteria, and in cells

avoid judgement in text, instead use (unsaturated!) cell background color

Neutral - clear
Some challenge or negative - yellow
Seems blocking or failing to address problem - red

Seems particularly desirable/better - green

DM Cells: Aspects (cont.)

Can start with just 'pros' and ‘cons' rows/cells

but important to split up later
only then are criteria explicit

and all approaches judged similarly

Contrast - ‘stand against’

edges are primary triggers of perception

A

Can't use Java methods that take Java
functional interfaces without using an
adapter or reify.

Right now, people are doing a lot of
redundant verbose reifying

example of use

Does it handle methods taking JUFs?

Does it handle methods taking primitive

JUFs?

syntax concerns

runtime perf

impl impact

Example: D

currently: reify to
adapt in user code

extend Clojure
AFn/iFnxx to some
Java interfaces

implement
additional curated
interfaces upon
AFn/AFunction
just Function,
BiFunction, and

what people do now Predicate?

(reify AFninterface

(a-method [X] (f x)) f

yes, via reify

yes, via reify - but
you need more
primitive type hints
and it makes the
incantation longer

repetitive

wrapper object and
delegation

none

yes, by changing
fns to be JUFs

yes, but it's a
bunch more

interfaces to

implement

like with strings,
numbers, etc - no
wrappers

possible perf
impacts for all fns
due to more
superinterfaces of
AFn (type
pollution)?

changes to
IFn/AFn

single fn adapter

satisfying all

common reifying common

adapters in util ns interfaces reify-like macro insert ada|
Compiler ¢

implement of checkcz

delegation a macro that discovers the are known

functions for SAM method name and Adapter w

common SAMs e.g. jfn’ emits a complete reify SAM targe

(SAM java.util.Comparator

(supplier f) [xy]

(unary-operator f) (and (vector? x) (vector? y

(jfn f) (compare (count x) (coLf

yes, via adapter yes, via adapter yes, by ch

(reify) (reify) adapt fns 1

yes, via adapter yes, via adapter

(can handle (can handle

primitive hints) primitive hints) yes, presu

this is only marginally

need to know many only one adapter winning over reify (don't

adapter names fn to know need method name)

wrapper object and wrapper object

delegation and delegation
Compiler;
additional

10-40 adapter fns? 1 adapter fn

macro entirely in userspace IFn

DM: Tips

Avoid

the all-green column - are you rationalizing?

undistinguished columns - find the differences that matter

exhaustive or template rowsets - s.b. specific criteria, not just characteristics
links as primary cell content - ok as supplement to summary text in cell
hidden comments/popups etc - keep things in view

phrasing criteria as questions - clash with inline gquestions

iInclude questions as soon as they arise!

put '?' anywhere (approach/criterion/aspect)
- if you are unsure of importance

- or the info is unknown

DM: Outputs

a succinct description of the problem/decision being taken on

a set of several approaches, succinctly described

an explicit and clear expression of what matters in making the decision
detailed aspects for all of the approaches per criterion

- aligned for contrast

at-a-glance, fine-grained subjective assessment
- subjectivity all in one place (cell color)

a set of questions for follow up

clear benefits+tradeoffs

DM: Benefits

come back later/arrive late - (re)load context

live group thinking tool - make everything visible as text
- VS voice + independent notes

promotes shared understanding
- call out ambiguity, inconsistency etc
- raise and capture questions and ideas immediately

birthplace of abstraction

provocation for background thought
hammock, sleep
where new columns and best answers are born

Phase: Design

tactics, implementation plan
the blueprint-like design

What do you know? the problem and the direction we are taking to solve
What do you need to know?

- the possible implementation approaches
- the best of these

- what matters in deciding
- how the users will use your solution

Phase: Design (cont.)

Where are you at? Have use cases and strategy/direction DM
Where are you going?

implementation approach DM(s)

design (plan) diagrams

Implementation decisions

add detail to Approach section of top story

fill in 'How' column in Use Cases

how user can accomplish using feature/API etc

possible scope adjustment or backtracking if impl poses new challenges

10

1"

A

Need Java experience to access
Math via static functions
Direction Not generic - just j.I.Math

gen when?

Usage

Definition

Load cost
Runtime perf

docstrings?

Can solution be applied to other
classes with static fns

Apply-able

JDK version impact

"Findability"

Example: Impl DM

current Math interop

Static imports - gen when
needed

(Math/sqrt ...)

none

n/a
Fast

no

yes - use static method

interop

no - would need
compiler changes to
make static fns
apply-able

use what you have

need to know JDK +
Java interop

|Ioading forwarding ns

(require '[clojure.math :as
math])
(math/sqrt ...)

Once dynamically, when
loaded or once during build if
compiled

Uses reflection to gen at load
For all java.lang.Math: ~3 ms

Or at compile time for normal
Fast via inlining

yes, but just point to the
wrapped method (can't easily
get to actual text)

yes - easy to apply to other
classes dynamically

yes

use what you have

need to know Clojure API
what AP|?

http://clojure.qgithub.io/clojure/

Code gen a Clojure ns usable at
runtime

build?

(require '[clojure.math :as math])
(math/sqrt ...)

Once during Clojure build
or ahead of time and check into
git? once

Normal ns load time (~ 0.1 ms)
Fast via inlining

yes, but just point to the wrapped
method (can't easily get to actual
text)

maybe?

yes

depends on JDK used at build
time

need to know Clojure API

Hand code a clojure.math
wrapper

(require '[clojure.math :as
math])
(math/sqrt ...)

Once

Normal ns load time (~ 0.1
ms)

Fast via inlining

could be whatever we want

no

yes

depends on hand coding

need to know Clojure API

Technique: Diagrams

details out of scope for this talk
important complement for tables and prose, better for:

architecture

flows

relationships
representations/layouts
Ul

diagram your problems, not just your solutions

Phase: Dev

build it

You understand why you are making the thing - solving this problem
You know how to make it - few or no unknowns

You are confident it will work

- lots of supportive material

- keeps you on track

- facilitates adding others to team

the solution will be smaller and more general due to having designed it
Have at, with your dev toolkit and techniques

but don't build something on the same day you think of it

Thanks!

Dan (for all the notes), Stu, Alex and my other Socratic wetns friends on the
Clojure and Datomic teams

Inspiration exists, but it has to
find you working

— Pablo Picasso

